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Probabilistic Motion Planning Under Temporal
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Abstract—This paper studies motion planning of a mobile
robot under uncertainty. The control objective is to synthe-
size a finite-memory control policy, such that a high-level
task specified as a linear temporal logic formula is satisfied
with a desired high probability. Uncertainty is considered
in the workspace properties, robot actions, and task out-
comes, giving rise to a Markov decision process that models
the proposed system. Different from most existing methods,
we consider cost optimization both in the prefix and suffix
of the system trajectory. We also analyze the potential trade-
off between reducing the mean total cost and maximizing
the probability that the task is satisfied. The proposed solu-
tion is based on formulating two coupled linear programs,
for the prefix and suffix, respectively, and combining them
into a multiobjective optimization problem, which provides
provable guarantees on the probabilistic satisfiability and
the total cost optimality. We show that our method outper-
forms relevant approaches that employ Round-Robin poli-
cies in the trajectory suffix. Furthermore, we propose a new
control synthesis algorithm to minimize the frequency of
reaching a bad state when the probability of satisfying the
tasks is zero, in which case, most existing methods return
no solution. We validate the above-mentioned schemes via
both numerical simulations and experimental studies.

Index Terms—Chance-constrained optimization, linear
temporal logic (LTL), Markov decision process (MDP), mo-
tion planning.

I. INTRODUCTION

IN THIS paper, we study the problem of robot motion plan-
ning under uncertainty and temporal task specifications. We

consider uncertainty in the workspace properties, robot motion
and actions, and outcome of task executions, which gives rise
to a Markov decision process (MDP) to model the proposed
system. MDPs have been used extensively to model motion and
sensing uncertainty in robotics [1], [2], and then solve decision-
making problems that optimize a given control objective. The
most common objective is to reach a goal state from an initial
state while minimizing the cost. The resulting solution is a pol-
icy that maps states to actions [2]. On the other hand, a linear
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temporal logic (LTL) provides a formal language to describe
complex high-level tasks beyond the classic start-to-goal navi-
gation. An LTL task formula is usually specified with respect to
an abstraction of the robot motion within the allowed workspace
[3], modeled by a deterministic finite transition system (FTS).
Then, a high-level discrete plan is found using off-the-shelf
model-checking algorithms [4], which is then executed through
low-level continuous controllers [3], [5]. This framework is ex-
tended to allow for both robot motion and actions in the task
specification [6] and partially known or dynamic workspaces in
[7] and [8].

Recently, there have been many efforts to address the prob-
lem of synthesizing a control policy for an MDP that satisfies
high-level temporal tasks specified in various formal languages.
Different classes of probabilistic computation tree logic (PCTL)
formulas have been studied in [9] for abstraction and verification
over interval-valued Markov chains (MCs). The work in [10]
proposes a control policy for a mobile robot that maximizes the
probability of satisfying a bounded LTL formula. Syntactical
co-safe LTL formulas are considered in [11] for a deterministic
robot that coexists with other robots whose behavior is modeled
as an MDP. An FTS with time-varying rewards is controlled to
satisfy an LTL formula and maximize the accumulated reward in
[12]. A robust control policy for MDPs with uncertain transition
probabilities is proposed in [8]. A verification toolbox is pro-
vided in [13] for probabilistic discrete-time or continuous-time
MC, under a wide variety of quantitative properties expressed
in a PCTL, an LTL, a CTL, etc.

In this paper, we study motion planning of a mobile robot un-
der uncertainty in both robot motion and workspace properties.
The goal is to synthesize a finite-memory control policy that
generates robot trajectories that satisfy a high-level LTL task
formula with desired high probability. At the same time, we
optimize the total cost both in the prefix and suffix parts of the
system trajectories. Our proposed approach is based on solving
two coupled linear programs, one for the prefix and one for the
suffix, over the occupancy measures of the product automaton
introduced in [14]. Moreover, we explore cases where the prob-
ability of satisfying the LTL tasks is zero, so that an accepting
end component (AEC) does not exist in the MDP, where most
relevant work returns no solutions. To address such situations,
we treat satisfaction of the tasks as soft constraints and propose
a relaxed suffix plan that minimizes the frequency with which
the system enters bad states that violate the task specifications.
We show that our approach outperforms the widely used Round-
Robin policy, via both numerical simulations and experimental
studies. We also compare our proposed method with the widely
used probabilistic model-checking tool PRISM [13].
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This paper is related to literature on the following:
1) policy synthesis for MDPs under multiple objectives;
2) cost optimization within AECs in MDPs; and
3) infeasible temporal tasks.

We discuss below this literature and highlight our
contributions.

Since we consider both temporal tasks and total-cost criteria
over MDPs, this paper is closely related to the policy synthesis
of MDPs under multiple objectives. The work in [14] proposes
a framework with provable correctness to synthesize a control
policy for MDPs under multiple constrained total-cost criteria.
A survey on multiobjective decision-making for MDPs can be
found in [15]. On the other hand, verification of MDPs un-
der multiple high-level tasks is addressed in [16], where the
probability of satisfying each subtask is lower bounded by a
given value. Moreover, a quantitative multiobjective verification
scheme is proposed in [17] and [18] for numerical queries over
probabilistic reward predicates. On the other hand, the seminal
works [19], [20] consider MDPs with multidimensional weights
under multipercentile queries that may be conflicting. However,
most of the above-mentioned work does not address cost op-
timization over the suffix of the system trajectory within the
AECs, neither does it address the case where no AECs can be
found in the product automaton, which are the main contribu-
tions here.

The satisfaction of an LTL formula is associated with reach-
ing the corresponding AECs. In particular, in [4, Ch. 10], a
value iteration method is used to solve the maximal reachability
problem towards the AECs to obtain a policy for the plan prefix.
For planning within the AECs, the Round-Robin policy, which
guarantees only correctness but not optimality, is adopted in [4],
[17], and [21]. Optimal policies for the plan suffix that keeps
the system within the AECs have been proposed in [22]–[25].
Specifically, in [22], the expected cost of satisfying instances
of a desired property is minimized, whereas in [23], the mini-
mal bottleneck cost is considered. Both approaches in [22] and
[23] require particular types of LTL formulas (such as “always
eventually”). The work in [24] and [26] considers MDPs with
ω-regular specifications and quantitative resource constraints
within the AECs. The work in [25] investigates the Pareto cost
of a human-in-the-loop MDP measured by a given discounted
cost function. Compared to this literature, the multiobjective
optimization problem that we formulate to solve the control
synthesis problem allows us to explicitly characterize the trade-
off between prefix and suffix optimality. We then extend this
methodology to the case where no AECs can be found.

Most aforementioned work [4], [17], [19]–[22], [27] relies
on the assumption that the product automaton contains at least
one AEC. However, in many situations, this assumption does
not hold so that the probability of satisfying the task under any
policy is zero. In this case, it is still important to identify those
policies that minimize the frequency with which the system
will reach the bad states that violate the task specifications.
Consequently, it is desirable to synthesize a policy with certain
risk guarantees even when soft LTL tasks are considered that are
only partially feasible. To the best of our knowledge, there is no
work on control synthesis for infeasible soft LTL task formulas
defined on MDPs, especially when an AEC cannot be found
in the resulting product automaton. For deterministic transition
systems, a framework for robot motion planning in partially

known workspaces is proposed in [7] that can handle soft LTL
task formulas whose satisfiability is improved over time; a least
violating control strategy is synthesized in [28] for a set of LTL
safety rules. In the case of MDPs, a relevant formulation is
considered in [29] where an MDP is controlled to satisfy an
ω-regular formula. A policy is proposed to ensure that the MDP
enters a failure state relatively late in the prefix. However, a
multiobjective criterion of the control policy, especially in the
plan suffix, is not considered there. Also, recent work in [30]
proposes an approach to increase the satisfaction probability
by modifying the task formula which, however, only considers
co-safe LTL formulas without cost optimization constraints.

In summary, the main contribution of this paper is threefold,
which is given as follows.

1) A framework that optimizes the total cost both in the plan
prefix and suffix while ensuring that the tasks are satisfied
with a desired high probability.

2) A new algorithm to synthesize the control policies that
have a high probability of satisfying the task over long
time intervals, for cases where an AEC does not exist.

3) A new method that allows the system to recover from bad
states and continue the task.

The rest of this paper is organized as follows. Section II
introduces necessary preliminaries. In Section III, we formal-
ize the considered problem. Section IV presents our solution
in details, which includes four major parts. Section V demon-
strates the feasibility of the results by numerical simulations.
Section VI contains the experimental results. We conclude and
discuss about future directions in Section VII.

II. PRELIMINARIES

A. Transient MDP

An MDP is defined as a 6-tuple M � (X, U, D, pD , cD ,
x0), where X is the finite state space; U is the finite control
action space (with a slight abuse of notation, U(x) also de-
notes the set of control actions allowed at state x ∈ X); D =
{(x, u) |x ∈ X, u ∈ U(x)} is the set of possible state-action
pairs; pD : X × U × X → [0, 1] is the transition probability
function so that pD (x, u, x̌) is the transition probability from
state x to state x̌ via control action u and

∑
x̌∈X pD (x, u, x̌) = 1,

∀(x, u) ∈ D; cD : D → R>0 that cD (x, u) is the cost of per-
forming action u ∈ U(x) at state x ∈ X; and x0 ∈ X is the ini-
tial state. Denote by Post(x, u) � {x̌ ∈ X | pD (x, u, x̌) > 0},
∀(x, u) ∈ D.

The above-mentioned MDP evolves by taking an action
u ∈ U(x) associated with every state x ∈ X . Denote by RT =
x0u0x1u1 . . . xT uT the past run that is a sequence of previous
states and actions up to time T ≥ 0. As defined in [2], a control
policy μ = μ0μ1 . . . is a sequence of decision rules μt at time
t ≥ 0. A control policy is stationary if μt = μ, ∀t ≥ 0, where μ
can be randomized so that μ : X × U → [0, 1] or deterministic
so that μ : X → U , ∀t ≥ 0. On the other hand, a policy is his-
tory dependent or finite memory if μt : Rt × U → [0, 1], where
Rt is the past history until time t ≥ 0.

B. End Components

A sub-MDP of M is a pair (S, A) where S ⊆ X and
A : S → 2U such that (i) S �= ∅, ∅ �= A(s) ⊆ U(s), ∀s ∈ S;
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(ii) Post(s, u) ⊆ S, ∀s ∈ S and ∀u ∈ A(s). An end compo-
nent (EC) of M is a sub-MDP (S, A) such that the digraph
G(S,A) induced by (S,A) is strongly connected. An EC (S, A)
is called maximal if there is no other EC (S ′, A′) such that
(S, A) �= (S ′, A′), S ⊆ S ′, and A(s) ⊆ A′(s), ∀s ∈ S. The set
of maximal end components (MECs) of an MDP is finite and can
be uniquely determined. The analysis of MECs would include
each EC as a special case. We refer the readers to [4, Defi-
nitions 10.116, 10.117, and 10.124] for details. Moreover, an
accepting MEC (AMEC) is an EC that satisfies certain accept-
ing conditions such as the Streett and Robin conditions, which
will be defined in the sequel. On the other hand, a strongly con-
nected component (SCC) of the digraph GM induced by M is a
set of states S ⊆ X , so that there exists a path in each direction
between any pair of states in S. Similarly, an accepting SCC
(ASCC) is an SCC that satisfies certain accepting conditions.
Note that the main difference between an MEC (S,A) and an
SCC S is that the SCC does not restrict the set of actions U(s)
that can be taken at each state s ∈ S. In other words, there might
be paths that start from any state within the SCC and end at states
outside the SCC.

C. LTL and Deterministic Rabin Automaton (DRA)

The ingredients of an LTL formula are a set of atomic propo-
sitions AP and several Boolean and temporal operators. Atomic
propositions are Boolean variables that can be either true or
false. An LTL formula is specified according to the syntax [4]:
ϕ � 
 | p | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1 U ϕ2 , where 
 � True,
p ∈ AP, © (next), U (until), and ⊥ � ¬
. For brevity, we omit
the derivations of other operators like � (always), ♦ (eventu-
ally), and ⇒ (implication). The semantics of an LTL is defined
over the set of infinite words over 2AP. Intuitively, p ∈ AP is
satisfied on a word w = w(1)w(2) . . . if it holds at w(1), i.e., if
p ∈ w(1). Formula ©ϕ holds true if ϕ is satisfied on the word
suffix that begins in the next position w(2), whereas ϕ1 U ϕ2
states that ϕ1 has to be true until ϕ2 becomes true. Finally, ♦ϕ
and �ϕ are true if ϕ holds on w eventually and always, respec-
tively. We refer the readers to [4, Ch. 5] for the full definition.

The set of words that satisfy an LTL formula ϕ over AP
can be captured through a DRA Aϕ [4], defined as Aϕ = (Q,
2AP, δ, q0 , AccA), where Q is a set of states; 2AP is the al-
phabet; δ ⊆ Q × 2AP × Q is a transition relation; q0 ∈ Q is
the initial state; and AccA ⊆ 2Q × 2Q is a set of accept-
ing pairs, i.e., AccA = {(H1

A, I1
A), (H2

A, I2
A), . . . , (HN

A , IN
A )}

where Hi
A, Ii

A ⊆ Q, ∀i = 1, 2, . . . , N . An infinite run q0q1q2
. . . of A is accepting if there exists at least one pair (Hi

A, Ii
A) ∈

AccA such that ∃n ≥ 0, it holds ∀m ≥ n, qm /∈ Hi
A, and

∞
∃n ≥ 0, qn ∈ Ii

A, where
∞
∃ stands for “existing infinitely many.”

Namely, this run should intersect with Hi
A finitely many times,

whereas with Ii
A infinitely many times. There are translation

tools [31] to obtain Aϕ given ϕ, which requires the process of
translating first the LTL formula to the associated nondetermin-
istic Büchi automaton, and then to the DRA with complexity
22O(n l o g n )

, where n is the length of ϕ. Our implementation of
the Python interface for [31] can be found in [32]. Note that
[31] allows for different levels of automata simplifications to
be made regarding the size of Aϕ , and a simplified automation
may result in loss of optimality.

III. PROBLEM FORMULATION

A. Mathematical Model

In order to model uncertainty in both the robot motion and
the workspace properties, we extend the definition of an MDP
from Section II-A to include probabilistic labels, as the proba-
bilistically labeled MDP

M = (X, U, D, pD , (x0 , l0), AP, L, pL , cD ) (1)

where AP is a set of atomic propositions that capture the prop-
erties of interest in the workspace; L : X → 22AP

contains the
set of property subsets that can be true at each state; and pL :
X × 2AP → [0, 1] specifies the associated probability. Particu-
larly, pL (x, l) denotes the probability that state x ∈ X satisfies
the set of propositions l ⊂ AP. Note that

∑
l∈L(x) pL (x, l) = 1,

∀x ∈ X . Moreover, (x0 , l0) contains the initial state x0 ∈ X
and the initial label l0 ∈ L(x0), whereas the rest of the notations
in (1) are the same as defined in Section II-A. The probabilistic
labeling function provides a way to consider time-varying and
dynamic workspace properties. Moreover, there is an LTL task
formula ϕ specified over the same set of atomic propositions
AP, as the desired behavior of M. We assume that the MDP M
in (1) is fully observable due to the following assumption.

Assumption 1: At any stage t ≥ 0, the current robot state
xt ∈ X and its label lt ∈ L(xt) are fully observable. �

While the robot is moving within the workspace, it is capable
of sensing an actual property and determine the label of the state
it is located at. At stage T ≥ 0, the robot’s past path is given by
XT = x0x1 . . . xT ∈ X(T +1) , the past sequence of observed
labels is given by LT = l0 l1 . . . lT ∈ (2AP)(T +1) and the past
sequence of control actions is UT = u0u1 . . . uT ∈ U (T +1) .
It holds that pD (xt, ut , xt+1) > 0 and pL (xt, lt) > 0, ∀t ≥ 0.
These three sequences can be composed into the complete past
run RT = x0 l0u0x1 l1u1 . . . xT lT uT . Denote by XT , LT , and
RT the set of all possible past sequences of states, labels, and
runs up to stage T . We set T = ∞ for infinite sequences.

Definition 1: The mean total cost [2], [33] of an infinite robot
run R∞ of M is defined as

Cost(R∞) = lim inf
n→∞

1
n

n∑

t=0

cD (xt, ut) (2)

where R∞ = x0 l0u0x1 l1u1 . . . ∈ R∞. �
As discussed in [2], [20], [24], and [33], the above-mentioned

mean total cost is called the mean-payoff function (or limit
average), where the “lim” operator is needed as the limit-average
might not exist for some runs (see [24], [33], and [34].

Our goal is to find a finite-memory policy for M, denoted by
μ = μ0μ1 . . .. The control policy at stage t ≥ 0 is given by μt :
Rt × U → [0, 1], where Rt is the past run Rt , ∀t ≥ 0. Denote
by μ the set of all such policies. Given a control policy μ ∈ μ,
the probability measure PrMμ (·) on the smallest σ-algebra, over
all possible infinite sequences R∞ that contain RT , is the unique
measure [4] by

Prμ
M(R∞) =

T∏

t=0

pD (xt, ut , xt+1)

· pL (xt, lt) · μt(Rt , ut) (3)
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where μ(Rt , ut) is defined as the probability of choosing action
ut given the past run Rt . Then, we define the probability of M
satisfying ϕ under policy μ by

Prμ
M(ϕ) = Prμ

M{R∞ |L∞ |= ϕ}
where the satisfaction relation “|=” is introduced in Section II-
C, given an infinite word and an LTL formula. Accordingly,
the risk is defined as the probability that the task formula ϕ is
not satisfied by M under the policy μ, namely Riskμ

M(ϕ) =
1 − Prμ

M(ϕ).
Problem 1: Given the labeled MDP M defined in (1) and

the task specification ϕ, our goal is to solve

min
μ∈μ

Eμ
M{Cost(R∞)}

s.t. Riskμ
M(ϕ) ≤ γ

(4)

where γ ≥ 0 is a predefined parameter as the allowed risk; the
optimal policy minimizes the mean total cost and ensures that
the risk of violating ϕ remains bounded by γ. �

Note that the traditional definition of undiscounted expected
total cost over an infinite run from [2] and [14] is not used here,
as it is infinite except for the special case of transient MDPs
defined in Section II-A. However, in this paper, the model M is
not restricted to be transient. Moreover, the discounted total cost
in [2] is not used here either due to two reasons: first, it is not
obvious how to choose the discount factor for various control
tasks ϕ [25]; and second, we are more interested in optimiz-
ing the repetitive long-term behavior of the system, rather than
the short-term one [20]. In-depth discussions on the optimiza-
tion of infinite-horizon undiscounted or discounted total-cost
criteria over MDPs with or without constraints can be found
in [2].

Remark 1: Different from the maximal reachability problem
addressed in [4] and [21], a deterministic policy would not
suffice here. Instead, randomization is required due to the mean
total-cost criterion and the risk constraint, similar to [14]. �

IV. SOLUTION

This section contains the three major parts of the proposed
solution, which are as follows:

1) the construction of the product automaton and its
AMECs;

2) the algorithms to synthesize the optimal plan prefix and
suffix, for both cases where the AMECs exist or not; and

3) the complete policy and the online execution algorithm.

A. Product Automaton and AMECs

To begin with, we construct the DRA Aϕ associated with
the LTL task formula ϕ via the translation tools [31], [32].
Let it be Aϕ = (Q, 2AP, δ, q0 , AccA), where the notations are
defined in Section II-C. Then, we construct a product automaton
between the robot model M and the DRA Aϕ .

Definition 2: Denote by P the product M×Aϕ as a 7-tuple

P = (S, U, E, pE , cE , s0 , AccP) (5)

where the state S ⊆ X × 2AP × Q is so that 〈x, l, q〉 ∈ S,
∀x ∈ X , ∀l ∈ L(x), and ∀q ∈ Q; the action set U is the same as

in (1) and U(s) = U(x), ∀s = 〈x, l, q〉 ∈ S; E = {(s, u) | s ∈
S, u ∈ U(s)}; the transition probability pE : S × U × S →
[0, 1] is so that

pE

(〈x, l, q〉, u, 〈x̌, ľ, q̌〉) = pD (x, u, x̌) · pL (x̌, ľ) (6)

where (i) 〈x, l, q〉, 〈x̌, ľ, q̌〉 ∈ S; (ii) (x, u) ∈ D; and (iii) q̌ ∈ δ
(q, l); the cost function cE : E → R>0 is so that cE (〈x, l,
q〉, u) = cD (x, u), ∀(〈x, l, q〉, u

) ∈ E. Namely, the label l
should fulfill the transition condition from q to q̌ in Aϕ ;
the single initial state is s0 = 〈x0 , l0 , q0〉 ∈ S; the accept-
ing pairs are defined as AccP = {(Hi

P , Ii
P), i = 1, 2, . . . , N},

where Hi
P = {〈x, l, q〉 ∈ S | q ∈ Hi

A} and Ii
P = {〈x, l, q〉 ∈

S | q ∈ Ii
A}, ∀i = 1, 2, . . . , N . �

The productP computes the intersection between all traces of
M and all words that are accepted to Aϕ , to find all admissible
robot behaviors that satisfy the task ϕ. It combines the uncer-
tainty in robot motion and the workspace model by including
both x and l in the states. The Rabin accepting condition of P
is defined as follows: An infinite path RP = s0s1 . . . of P is
accepting if for at least one pair (Hi

P , Ii
P) ∈ AccP , it holds that

RP intersects with Hi
P finitely often, whereas with Ii

P infinitely
often. To transform this condition into equivalent graph proper-
ties, we need to compute the AMECs of P associated with its
accepting pairs AccP . Detailed definition of MECs is given in
Section II-B.

In order to find the complete set of AMECs of P , for each
pair (Hi

P , Ii
P) ∈ AccP , perform the following steps:

(i) Build the MDP Z¬H
i � (S ′, U ′, E′, p′E ), where S ′ =

S¬H
i ∪ {ν} is the set of states with S¬H

i = S\Hi
P and ν a

trap state; U ′ = U ∪ {τ0} is the set of actions where τ0 is a
pseudoaction; E ′ ⊂ S ′ × U is the set of transitions with the
associated probability p′E that are defined by three cases: (a)
for the transitions within S¬H

i , it holds that (s, u) ∈ E ′ and
p′E (s, u, š) = pE (s, u, š), ∀(s, u) ∈ E, where s, š ∈ S¬H

i ;
(b) for the transitions from S¬H

i to outside S¬H
i , it holds that

(s, u) ∈ E ′ and p′E (s, u, ν) =
∑

š /∈S ¬H
i

pE (s, u, š),∀(s, u) ∈
E, where s ∈ S¬H

i ; and (c) the trap state is included in a
self-loop such that (ν, τ0) ∈ E ′ and p′E (ν, τ0 , ν) = 1. Simply
speaking, all transitions from inside S¬H

i to outside S¬H
i are

transformed to transitions to the trap state ν.
(ii) Determine all MECs of Z¬H

i above via [4, Algo-
rithm 47], which is based on splitting the SCCs of Z¬H

i un-
til the conditions of being an EC are fulfilled. Our imple-
mentation for this algorithm can be found in [32]. Denote by
Ξi = {(S ′

1 , U ′
1), (S

′
2 , U ′

2), . . . (S
′
Ci

, U ′
Ci

)}, the set of MECs,
where S ′

c ⊂ S ′ and U ′
c : S ′

c → 2U ′
, ∀c = 1, 2, . . . , Ci . Note that

S ′
c ∩ S ′

c ′ = ∅, ∀(S ′
c , U

′
c), (S

′
c ′ , U

′
c ′) ∈ Ξi .

(iii) Find (S ′
c , U ′

c) ∈ Ξi that is accepting, i.e., it satisfies
ν /∈ S ′

c and S ′
c ∩ Ii

P �= ∅. Save the AMECs in Ξi
acc. Since

Ξi
acc is computed for each (Hi

P , Ii
P) ∈ AccP , we denote by

Ξacc = {Ξi
acc, i = 1, . . . , N}, the complete set of AMECs of

P .
Remark 2: A single state with a self-transition can be an

MEC with a proper action set. Therefore, there exist at most |S ′|
MECs within Z¬H

i , ∀i = 1, . . . , N . Thus, Step (ii) above has
complexity O(|S ′|2), as shown in [4, Lemma 10.126], whereas
Steps (i) and (iii) have complexity linear with |S ′|. �
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B. Plan Prefix and Suffix Synthesis

Given the complete set of AMECs Ξacc of P , in this section,
we show how to synthesize the control policy to drive the system
towards Ξacc and furthermore remain inside Ξacc while satisfying
the accepting condition. As mentioned in Section I, most related
work [4], [16], [17], [21] focuses on maximizing the probability
of reaching the union of AMECs, i.e., ∪(S ′

c , U ′
c )∈Ξacc

S ′
c , where

dynamic programming techniques, such as value or policy iter-
ation, can be applied to obtain the optimal policy. Furthermore,
once the system enters any AMEC, e.g., (S ′

c , U ′
c) ∈ Ξacc, it

has probability 1 of staying within S ′
c by following U ′

c (see
[4, Lemma 10.119]). The Round-Robin policy is adopted in
[4], [17], and [21] that ensures all states in S ′

c (including its
nonempty intersection with Ii

P ) are visited infinitely often. As
a result, the task ϕ is satisfied by P under this policy with the
maximal probability.

The above-mentioned solutions may suffice for verification
problems that do not optimize cost or for tasks with trivial ac-
cepting conditions. However, for the purposes of plan synthesis
and for general tasks, it is of practical interest to simultaneously
satisfy the probability of reaching all the AMECs as well as op-
timize the mean cost of staying within any AMEC and fulfilling
the accepting condition. Moreover, when no AECs can be found,
instead of simply reporting failure, it is important to obtain a
relaxed policy that guarantees high probability of satisfying the
task over long time intervals, thus minimizing the frequency of
encountering bad events. In what follows, we present a policy
synthesis algorithm that consists of four parts.

1) The plan prefix that drives the system from the initial
state to all AMECs while minimizing the expected cost
and respecting the risk constraint (see Section IV-B1).

2) The plan suffix that keeps the system within the AMEC it
has reached while satisfying the accepting condition and
optimizing the expected suffix cost (see Section IV-B2).

3) The relaxed prefix and suffix plans for the case where no
AECs of P can be found (see Section IV-B3).

4) The complete finite-memory policy for the original MDP
M (see Section IV-C1).

Before stating the solution, we introduce a partition of S,
given the initial state s0 and the set of AMECs Ξacc. Let Sr ⊆ S
be the set of states within S that can be reached from s0 , which
can be derived via a simple graph search in P .

Definition 3: Given s0 and Ξacc, S is partitioned as S =
So ∪ Sc ∪ Sd ∪ Sn , where So � S\Sr is the set of states that
can not be reached from s0 ; Sc is the union of all goal states in
Ξacc, i.e., Sc � ∪(S ′

c , U ′
c )∈Ξacc

S ′
c ; Sd ⊆ Sr can be reached from

s0 but cannot reach any state in Sc ; and Sn �Sr\(Sc ∪ Sd). �
The set Sd can be derived through a simple graph search,

e.g., by reversing the directed graph associated with P , finding
all reachable nodes of any state within each (S ′

c , U ′
c) ∈ Ξacc (as

any AMEC is strongly connected), and finally computing its
cross intersection with Sr (see [32] for implementation details).
Roughly speaking, Sn is the set of states related to the plan
prefix, Sc is the set of goal states related to the plan suffix, and
Sd is set of bad states to be avoided during the prefix. Since So

contains the states that cannot be reached from s0 , it is neglected
hereafter for the purpose of plan synthesis.

Fig. 1. Illustration of the partition of S in Definition 3, where Sr , Sc , So ,
Sn , and Sd are highlighted by red, blue, orange, green, and black areas,
respectively. Details can be found in Example 1.

Example 1: This example illustrates the partition in Defi-
nition 3. Consider the toy product automaton P in Fig. 1.
For state s0 , the set of reachable states is Sr = {s0 , s1 , s2 , s3 ,
s5 , s6 , s7 , s8 , s10}, the set of unreachable states is So =
{s4 , s9}, the states within an AMEC are S ′

c1
= {s5 , s6 , s10},

and another AMEC S ′
c2

= {s7 , s8}, thus Sc = S ′
c1

∪ S ′
c2

=
{s5 , s6 , s7 , s8 , s10}, the states that can be reached from s0 but
cannot reach Sc are Sd = {s1 , s3}, and the states that s0 can
reach outside Sc ∪ Sd are Sn = {s0 , s2}. �

1) Plan Prefix: Similar to [17] and [18], we first con-
struct a modified sub-MDP Zpre of P as Zpre � (Sp, Up, Ep,
s0 , pp, cp), where the set of states is given by Sp = Sn ∪ Sc

with Sn , Sc being defined in Definition 3. The set of ac-
tions is given by Up = U ∪ {τ0} where τ0 is a self-loop ac-
tion. The set of transitions Ep is the subset of E associated
with Sp. Moreover, the transition probability pp is defined
by (i) pp(s, u, š) = pE (s, u, š), ∀s, š ∈ Sp where s /∈ Sc and
∀u ∈ U(s); and (ii) pp(s, τ0 , s) = 1, ∀s ∈ Sc . Finally, the cost
function cp is defined by (i) cp(s, u) = cE (s, u), ∀s ∈ Sn and
∀u ∈ U(s); and (ii) cp(s, τ0) = 0, ∀s ∈ Sc .

Then, we find a policy for Zpre such that, starting from s0 , it
can reach the set of goal states Sc with a probability larger than
1 − γ, while at the same time, minimizing the expected total
cost. Formally, consider the problem as follows.

Problem 2: Given the sub-MDP Zpre, compute an optimal
stationary prefix policy π	

pre ∈ π that solves the problem

min
π∈π

[

Cpre(Sc) � Eπ
Zpre

{ ∞∑

t=0

cp(st , ut)

}]

s.t. Prπ
s0

(♦Sc) ≥ 1 − γ (7)

where s0u0s1u1 . . . is a run of Zpre, π is the set of all station-
ary policies, the objective function is the expected total cost,
Prπ

s0
(♦Sc) is the probability of reaching Sc from the initial

state s0 , under the policy π; and γ > 0 is from (4). �
Note that the objective function in (7) is well defined and

finite due to the fact that Zpre is transient with respect to Sn ,
and is equal to the expected total cost of reaching Sc since the
cost of staying within Sc is zero. We omit the proof that Zpre

is transient here and refer the interested readers to [2] and [14].
Our proposed solution to Problem 2 is based on transforming it
into a constrained optimization problems for MDPs, which can
be then solved using linear programming (LP). The approach is
inspired by [14], [16], and [17]. Particularly, denote by ys,u , the
expected number of times over the infinite horizon that the sys-
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Fig. 2. Uncertainty of each action primitive, see Section V for details.
Possible post states are in gray from the starting state in black, where
the associated possibilities are marked in red.

tem is at state s and action u is taken, ∀s ∈ Sn and ∀u ∈ U(s),
which are often referred to as occupancy measures [14] as it
holds ys,u =

∑∞
t=0 Prπ

s0
[st = s, ut = u], where the probabil-

ity is conditioned on a policy π and the initial state s0 . Note
that an occupancy measure is a sum of probabilities, but not a
probability itself. Consider the linear program as follows:

min
{ys , u }

⎡

⎣Cpre(Sc) �
∑

(s,u)

∑

š∈Sp

ys,u pp(s, u, š) cp(s, u)

⎤

⎦ (8a)

s.t.
∑

(s,u)

∑

š∈Sc

ys,u pp(s, u, š) ≥ 1 − γ (8b)

∑

u∈U (š)

yš,u =
∑

(s,u)

ys,u pp(s, u, š) + 1(š = s0) ∀š ∈ Sn

(8c)

ys,u ≥ 0 ∀s ∈ Sn ∀u ∈ U(s) (8d)

where
∑

(s,u) �
∑

s∈Sn

∑
u∈U (s) , the indicator function 1(š =

s0) = 1 if š = s0 , and 1(š = s0) = 0, otherwise. Denote by
Cpre(Sc), the objective function associated with Sc . Let the
solution of (8) be y	

pre = {y	
s,u , s ∈ Sn , u ∈ U(s)}. Then, the

optimal stationary policy for the plan prefix, denoted by π	
pre,

can be derived as follows: the probability of choosing ac-
tion u at state s equals to π	

pre(s, u) = y	
s,u/(

∑
u∈U (s) y	

s,u )
if

∑
u∈U (s) y	

s,u �= 0; otherwise, the action at s can be chosen
randomly, ∀s ∈ Sc .

Lemma 1: Given an optimal solution y	
pre of (8), the associ-

ated policy π	
pre ensures that Prπ	

s0
(♦Sc) ≥ 1 − γ.

Proof: First, ys,u is finite and well defined since Zpre is tran-
sient with respect to Sn . The second part of the proof is similar to
[16, Lemma 3.3]. The summation

∑
(s,u)

∑
š∈Sc

ys,u pp(s, u, š)
is the expected number of times that Zpre transitions from any
state in Sn into Sc for the first time, under policy π	

pre from
the initial state s0 . Since the system remains within Sc once it
enters Sc , the summation equals the probability of eventually
reaching the set Sc , which is lower bounded by 1 − γ. �

Example 2: This example illustrates the important role of
γ in the tradeoff between reducing the expected total cost
and minimizing the risk in Problem 2. Consider the unicycle
robot with action primitives illustrated in Fig. 2 and defined in
Section V. The robot moves within partitioned cells, as shown
in Fig. 3, where the red cell has probability 0.9 to be occupied
by an obstacle. Consider the task: ϕ = (♦�b) ∧ (�¬obs), i.e.,
to reach the yellow base without crossing any obstacle. In what
follows, we solve (8) under risk factors γ = 0 and γ = 0.4 to
derive two different optimal policies. Fig. 3 shows a shorter
trajectory with lower expected total cost of about 12.6 when a

Fig. 3. Trajectories when setting γ = 0.4 (left) and γ = 0 (right). The
task is to reach the yellow base while avoiding the red cell.

larger risk is allowed, compared with the right trajectory that
avoids completely colliding with the obstacle, but with a much
higher total cost of about 33.7. �

2) Plan Suffix With AMECs: In this section, we present an
algorithm to synthesize the plan suffix that minimizes the mean
total cost within the AMECs while ensuring that the system tra-
jectory satisfies the accepting condition of P . Note that the plan
prefix π	

pre from the previous section guarantees that the system
enters Sc from s0 with probability higher than 1 − γ. Recall also
that Sc = ∪(S ′

c ,U ′
c )∈Ξacc

S ′
c . Thus, it is possible that the system

enters any set S ′
c within Ξacc. For this reason, we propose to treat

each AMEC (S ′
c , U ′

c) ∈ Ξacc separately, as each S ′
c is associ-

ated with different U ′
c , and thus a different accepting condition

for S ′
c ∩ Ii

P . Specifically, consider any AMEC (S ′
c , U

′
c) ∈ Ξacc

and let I ′c � S ′
c ∩ I ′P , which is nonempty by the definition of an

AMEC.
Once the system enters any AMEC, most related work [4],

[17], [21] adopts the Round-Robin policy defined as follows.
Definition 4: For each state st ∈ S ′

c , create any ordered se-
quence of actions from U ′

c(st), denoted by U(st) and its infinite
repetition by U

ω
(st). Then, at any stage t > 0, whenever the

system reaches st ∈ S ′
c , the Round-Robin policy instructs the

system to take the next action in U
ω
(st), starting from the first

action in U
ω
(st). �

Namely, once the system enters S ′
c , the Round-Robin policy

iterates over the allowed actions for each state, which in turn en-
sures that all states in S ′

c (which include I ′c ) are visited infinitely
often. Detailed can be found in [4, Lemma 10.119].

Definition 5: An accepting cyclic path of P , associated with
S ′

c and I ′c , is a finite path that starts from any state sf ∈ I ′c and
ends in any state sg ∈ I ′c while remaining within S ′

c . �
Note that an accepting cyclic path does not necessarily start

and end at the same state in I ′c . Furthermore, we can define the
mean cyclic cost of P under a stationary policy.

Definition 6: The total cost of a cyclic path Pa = s0u0s1u1
. . . sNa

uNa
is defined as

Csuf(Pa) �
Na∑

t=0

cD (st , ut) (9)

where Na ≥ 1 is the length of the path and s0 , sNa
∈ I ′c . Then,

its mean total cost is defined as Csuf(Pa) � 1
Na

Csuf(Pa). �
Problem 3: Find a stationary suffix policy π	

suf for P within
S ′

c that minimizes the mean cyclic cost

Csuf(S ′
c , U

′
c) = Eπ

Pa ∈Pa
{Csuf(Pa)} (10)
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where Pa is the set of all accepting cyclic paths associated with
the AMEC (S ′

c , U
′
c). �

Inspired by [20], [24], and [33], we formulate a linear program
to solve the mean-payoff optimization problem. First, we con-
struct a modified sub-MDPZsuf ofP over S ′

c by splitting I ′c into
two virtual copies: Iin that only has incoming transitions into
I ′c and Iout that has only outgoing transitions from I ′c . Formally,
we define Zsuf � (Se, Ue, Ee, y0 , pe, ce), where the set of
states is Se = (S ′

c\I ′c) ∪ Iin ∪ Iout with Iin = {sinf , ∀sf ∈ I ′c}
and Iout = {soutf , ∀sf ∈ I ′c}, the virtual copies of I ′c . The set
of control actions is Ue = U ∪ {τ0}, where τ0 is a self-loop
action. The set of state-action pairs Ee ⊂ Se × Ue is defined
by (i) (s, u) ∈ Ee, ∀s ∈ S ′

c\I ′c and u ∈ U ′
c(s); (ii) (s, τ0) ∈ Ee,

∀s ∈ Iin; and (iii) (soutf , u) ∈ Ee, ∀sf ∈ I ′c and u ∈ U ′
c(sf ).

Moreover, y0 is the initial distribution of all states in S ′
c that can

be reached by taking a transition from states in S ′
n defined by

y0(s) =
∑

š∈S ′
n

∑

u∈Up(š)

pp(š, u, s)ypre(š, u) ∀s ∈ (S ′
c\I ′c) ∪ Iout

where {ypre(s, u)} are the variables of (8). Furthermore, the
transition probability pe is defined in five cases as follows:
(a) for transitions within S ′

c\I ′c , it holds that pe(s, u, š) =
pE (s, u, š), ∀s, š ∈ S ′

c\I ′c , ∀u ∈ Ue(s); (b) for transitions orig-
inated from Iout, it holds that pe(soutf , u, š) = pE (sf , u, š),
∀soutf ∈ Iout, ∀u ∈ Ue(soutf ), and ∀š ∈ S ′

c\I ′c ; (c) for tran-
sitions into Iin, it holds that pe(s, u, sinf ) = pE (s, u, sf ),
∀s ∈ S ′

c\I ′c , ∀u ∈ Ue(s), and ∀sinf ∈ Iin; (d) for transitions
from Iout to Iin, it holds that pe(soutf , u, sinf ) = pE (sf , u, sf ),
∀soutf ∈ Iout and ∀u ∈ Ue(soutf ); and (e) for transitions within
Iin, pe(sinf , τ0 , s

in
f ) = 1, ∀sinf ∈ Iin. Finally, the cost function

satisfies ce(s, u) = cE (s, u), ∀s ∈ (Se\Iin), ∀u ∈ Ue(s), and
ce(sinf , τ0) = 0, ∀sinf ∈ Iin.

Remark 3: The initial distribution y0 of Zsuf indicates how
likely it is that the system controlled by the plan prefix π	

pre will
enter the AMEC (S ′

c , U ′
c) via each state inside S ′

c . �
Let also S ′

e � Se\Iin and denote by zs,u the long-run fre-
quency with which the system is at state s and the action u is
applied, ∀s ∈ S ′

e and ∀u ∈ Ue(s). Then, we can formulate the
following linear program to solve Problem 3:

min
{zs , u }

⎡

⎣Csuf(S ′
c , U

′
c) �

∑

(s,u)

∑

š∈Se

zs,u pe(s, u, š) ce(s, u)

⎤

⎦

(11a)

s.t.
∑

(s,u)

∑

š∈Iin

zs,u pe(s, u, š) =
∑

s∈S ′
e

y0(s) (11b)

∑

u∈Ue(s)

zs,u =
∑

(š,u)

zš,u pe(š, u, s) + y0(s) ∀s ∈ S ′
e (11c)

zs,u ≥ 0, ∀s ∈ S ′
e ∀u ∈ Ue(s) (11d)

where
∑

(s,u) �
∑

s∈S ′
e

∑
u∈Ue(s) , the first constraint ensures

that Iin is eventually reached, whereas the second constraint
balances the incoming and outgoing flow at each state. Let its
solution be z	

suf = {z	
s,u , ∀s ∈ S ′

e, ∀u ∈ Ue(s)}. Then, the op-
timal stationary policy for the plan suffix, denoted by π	

suf,
can be derived as follows: the probability of choosing ac-

Fig. 4. Simulated trajectory under π	
suf (left) and under the Round-

Robin policy (right), see Example 3.

tion u at state s equals to π	
suf(s, u) = z	

s,u/(
∑

u∈Ue(s) z	
s,u )

if
∑

u∈Ue(s) z	
s,u �= 0; otherwise the action at s is chosen ran-

domly, ∀s ∈ S ′
e. Note that π	

suf(sf , u) = π	
suf(s

out
f , u), ∀sf ∈

I ′c and ∀u ∈ U ′
c(sf ). Namely, once the system reaches any state

sg ∈ I ′c , the control policy at sg will be the control policy for
soutg ∈ Iout, according to the solution of (11).

Remark 4: The initial distribution is derived from (8), instead
of being arbitrarily set as in [25]; Moreover, (11b) ensures that
only I ′c is intersected infinitely often, instead of enforcing that
all states in the set S ′

c are visited infinitely often as in [25]. �
Lemma 2: If (11) has a solution, then the plan suffix π	

suf

solves Problem 3 for the chosen AMEC (S ′
c , U

′
c) ∈ Ξacc.

Proof: First, by Definition 5, the objective in (11) equals the
mean cyclic cost of all accepting cyclic paths for I ′c . Moreover,
by the definition of an AMEC, any path remains within S ′

e by
choosing only actions within U ′

c(s) at each state s ∈ S ′
e.

Lemma 3: Let τP be the set of all accepting runs of P that
enter S ′

c after a finite number of steps. If τP ∈ τP is gener-
ated under π	

suf, then τP satisfies the accepting condition of P .
Moreover, the mean total cost in (2) equals the mean cyclic cost
in (10), i.e., EτP∈τP {Cost(τP)} = Csuf(S ′

c , U ′
c).

Proof: By (11), any system trajectory of P under π	
suf con-

tains infinite occurrences of accepting cyclic paths. Since any
accepting cyclic path starts from and ends in I ′c (which is finite),
τP intersects with I ′c infinitely often. Moreover, since any ac-
cepting cyclic path remains within S ′

c , τP remains within S ′
c for

all time after entering S ′
c . In other words, τP intersects with Hi

P
a finite number of times before entering S ′

c and then intersects
Ii
P infinitely often after entering S ′

c , which satisfies the Rabin
accepting condition of P . To show the second part, notice that
the product P under π	

suf evolves as an MC and the set of all
accepting cyclic paths within S ′

c has a stationary distribution.
By viewing any accepting run τP as the concatenation of an infi-
nite number of cyclic paths, the mean total cost of τP defined in
(4) over an infinite time horizon equals the mean cyclic cost in
(10) of all cyclic paths contained in τP . This result is important
in showing the equivalence between Problems 1 and 3 later in
Theorem 6.

Example 3: This example illustrates the difference between
the plan suffix obtained by (11) and the Round-Robin policy.
Consider the same robot model from Example 2 and the par-
titioned workspace in Fig. 4. The task is to surveil three base
stations in the corners, i.e., ϕ = (�♦b1) ∧ (�♦b2) ∧ (�♦b3).
The plan prefix is derived by solving (8) but two different plan

Authorized licensed use limited to: University of Southern California. Downloaded on January 23,2021 at 00:51:11 UTC from IEEE Xplore.  Restrictions apply. 



4058 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 12, DECEMBER 2018

Fig. 5. MDP M (left) and DRA Aϕ (right, derived via [31] and [32])
described in Example 4, with one accepting pair ({2}, {0, 1}).

Fig. 6. Product P of M and Aϕ in Fig. 5. The state and edge names
are omitted as the structure is of importance here. At least one green
state should be visited infinitely often while avoiding all red states. Note
all transitions are driven by the action f .

suffixes are used: one using (11) and the Round-Robin policy.
Fig. 4 shows the simulated trajectory under these two policies. It
can be seen that the trajectory under the optimal plan suffix ap-
proximates the shortest route to cross all base stations, whereas
the trajectory under the Round-Robin policy exhibits a rather
random behavior. �

3) Plan Synthesis When AECs Do Not Exist: The synthe-
sis algorithms proposed in Sections IV-B1 and IV-B2 rely on
the assumption that the set of AMECs Ξacc of P is nonempty
which, however, might not hold in many scenarios. In this case,
most existing techniques proposed in [4], [17], [21], and [22]
cannot be applied. In this section, we first provide a simple ex-
ample where no AECs exist, and then propose an approach to
synthesize a relaxed plan prefix and suffix.

Example 4: This example provides a robot model M and
its task ϕ for which no AECs exist in the product automaton
P . Consider the MDP M in Fig. 5 that transitions between two
states (S1 , S2) with probability 1 using the action f . Note that S1
has only probability 0.01 of being occupied by an obstacle and
S2 is the base station. The task is to surveil the base station while
avoiding obstacles, i.e., ϕ = (�♦b) ∧ (�¬obs). The associated
DRA is shown in Fig. 5. The resulting P is shown in Fig. 6,
where the set of states HP

i to avoid in the suffix is in red and
the set of states IPi to intersect infinitely often is in green. The
reason that no AECs exist in P is because by definition, an AEC
(S ′, {f}) should include all successor states that are reachable
by the single action f . Then, starting from any green state in
IPi , the set of reachable states eventually intersect with the red
states in HP

i . �
When no AECs exist in P , the probability of satisfying the

task under any policy is zero. However, it is still important to
identify those policies that ensure high probability of avoiding
bad states over long time intervals. Consequently, we propose to
use an ASCC of P as the relaxed AMEC, due to the following
lemma.

Lemma 4: Assume that there exists one infinite path of P
that is accepting. Then, there exists at least one SCC of P
that intersects with Ii

P but not with Hi
P , for at least one pair

(Hi
P , Ii

P) ∈ AccP .
Proof: As mentioned before, an infinite path of P , denoted

by RP , is accepting if for at least one pair (Hi
P , Ii

P) ∈ AccP ,
it holds that RP intersects with all states in Hi

P finitely often,
whereas with Ii

P infinitely often. Since both Hi
P and Ii

P are finite,
there exists a cyclic path sk . . . sf . . . sk of P that contains at
least one sf ∈ Ii

P and does not contain any state within Hi
P . By

definition, this cyclic path is an SCC of P that intersects with
Ii
P but not with Hi

P .
Denote the set of SCCs in P as Ω � {S ′

1 , S
′
2 , . . . , S

′
C },

where S ′
c ⊆ S. This set can be derived using Tarjans algorithm

[4], [32]. Moreover, denote by Ωi
acc = {S ′

c ∈ Ω |S ′
c ∩ Ii

P �=
∅, S ′

c ∩ Hi
P = ∅}, the set of SCCs that satisfy the accepting

conditions associated with (Hi
P , Ii

P) ∈ AccP . Lemma 4 ensures
that Ωi

acc �= ∅ for at least one pair (Hi
P , Ii

P) ∈ AccP . Therefore,
the union Ωacc � ∪i=1,...,N Ωi

acc is not empty.
Now, the union Sc � ∪S ′

c ∈ΩaccS
′
c serves as the set of states

the system should enter, starting from the initial state, and then
remain inside any of the ASCC to satisfy the accepting condi-
tion. Again, the first step is to formulate a linear program that
minimizes the expected total cost of reaching Sc from s0 while
ensuring the risk is upper bounded by the chosen γprex > 0. It
can be done analogously as in (8) but over Sn � S\Sc (which is
omitted here). Denote the objective function by Cprex(Sc) and
its set of variables by {yprex(s, u)} and the associated relaxed
plan prefix as πprex. Similar to Section IV-B2, it is possible that
the system under the policy πprex can enter any ASCC in Ωacc.
Assume that the system enters S ′

c ∈ Ωacc. Different from an
AMEC (S ′

c , U
′
c) ∈ Ξacc, the action set at each state of S ′

c ∈ Ωacc

is not constrained. Thus, there is no guarantee that the system
will stay within S ′

c after entering it.
Therefore, the second step is to synthesize the relaxed plan

suffix that keeps the system inside S ′
c to satisfy the accepting

condition with the maximal probability. Define the set I ′c =
S ′

c ∩ Ii
P , which is not empty for an ASCC S ′

c . Then, an accepting
cyclic path ofP associated with I ′c , and the cyclic cost associated
with S ′

c and I ′c can be defined similarly as in Definition 5.
Formally, we consider the following problem.

Problem 4: Find a control policy for P that mini-
mizes the mean cyclic cost associated with the ASCC S ′

c :
Eπ

Pa ∈Pa
{Csufx(Pa)}, where Pa is the set of all accepting cyclic

paths associated with S ′
c and Csufx is defined as in Definition

6; while at the same time, maximizing the probability that the
cyclic paths stay within S ′

c . �
In Problem 4, the first objective of minimizing the mean

cyclic cost corresponds to minimizing the mean total cost in
(4) in Problem 1. The objective of maximizing the probabil-
ity of the system staying within the ASCC S ′

c corresponds to
minimizing the frequency with which the system will reach
the bad states that violate the task specifications. It consti-
tutes a relaxation of the risk constraint (4) in Problem 1. To
solve Problem 4, first we construct a modified MDP Zsufx

over S ′
c , which is similar to Zsuf in Section IV-B2. The set

I ′c is split into two virtual copies: Iin that only has incom-
ing transitions and Iout that has only outgoing transitions.
Formally, we define Zsufx = (Sr, Ur, Er, y0 , pr, cr), where
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the set of states is Sr = (S ′
c\I ′c) ∪ Iin ∪ Iout ∪ {sbad}, with

Iin = {sinf , ∀sf ∈ I ′c} and Iout = {soutf , ∀sf ∈ I ′c}, the two
virtual copies of I ′c , and sbad is a virtual bad state. The set of con-
trol actions is given by Ur = U ∪ {τ0}, where τ0 is a self-loop
action. The set of transition is Er ⊂ Sr × Ur, which satisfies
that (i) (s, u) ∈ Er, ∀s ∈ S ′

c and u ∈ U(s); (ii) (s, τ0) ∈ Er,
∀s ∈ Iin; and (iii) (sbad, τ0) ∈ Er. Moreover, y0 is the initial
distribution of states in S ′

c based on the incoming transitions
from states in S ′

n

y0(s) =
∑

(š,u)

pp(š, u, s) yprex(š, u), ∀s ∈ (S ′
c\I ′c) ∪ Iout

where
∑

(š,u) �
∑

š∈S ′
n

∑
u∈Up(š) and {yprex(s, u)} are the

variable solutions from the synthesis of the relaxed plan pre-
fix, and y0(sbad) = 0. Furthermore, the transition probabil-
ity pr is defined in seven cases as follows: (a) for tran-
sitions within S ′

c\I ′c , it holds that pr(s, u, š) = pE (s, u, š),
∀s, š ∈ S ′

c\I ′c , ∀u ∈ Ur(s); (b) for transitions originated from
Iout, it holds that pr(soutf , u, š) = pE (sf , u, š), ∀soutf ∈ Iout,
∀u ∈ Ur(soutf ), and ∀š ∈ S ′

c\I ′c ; (c) for transitions into Iin,
it holds that pr(s, u, sinf ) = pE (s, u, sf ), ∀s ∈ S ′

c\I ′c , ∀u ∈
Ur(s), and ∀sinf ∈ Iin; (d) for transitions from Iout to Iin,
it holds that pr(soutf , u, sinf ) = pE (sf , u, sf ), ∀soutf ∈ Iout and
∀u ∈ Ur(soutf ); (e) for transitions into the bad state sbad, it holds
that pr(s, u, sbad) = pE (s, u, š), ∀s ∈ S ′

c\Iin, ∀š ∈ S\S ′
c , and

u ∈ Ur(s); (f) each state within Iin is included in a self-loop
such that pr(sinf , τ0 , s

in
f ) = 1, ∀sinf ∈ Iin; (g) the bad state is in-

cluded in a self-loop such that pr(sbad, τ0 , sbad) = 1. Finally, the
cost function cr is defined in two cases: (i) cr(s, u) = cE (s, u),
∀s ∈ Sr\Iin, ∀u ∈ Ur(s); and (ii) cr(sinf , τ0) = 0, ∀sinf ∈ Iin
and cr(sbad, τ0) = 0.

Remark 5: Note that Er contains all actions for each state in
S ′

c , compared with Ee as allowed by the AMEC. �
Let S ′

r � Sr\(Iin ∪ {sbad}) and S ′′
r � Sr\{sbad}. We can

also show that Zsufx above is S ′
r- transient. Then, to solve

Problem 4, we rely on a technique proposed in [35] to deal
with dead ends in stochastic shortest path problems. First, we
introduce a large positive penalty for reaching the dead state,
denoted by d > 0. Then, we modify (11) as follows: denote by
zs,u the long-run frequency with which the system is at state s
and the action u is taken, ∀s ∈ S ′

r and ∀u ∈ Ur(s). We want to
minimize the mean total cost of reaching Iin from Iout while
minimizing the probability of leaving S ′′

s . In particular, we con-
sider the following optimization:

min
{zs , u }

⎡

⎣Csufx(S ′
c , d) �

∑

(š,u)

( ∑

s∈S ′′
r

η(š, u, s) cr(š, u)

+ η(š, u, sbad) d
)]

(12a)

s.t.
∑

u∈Ur(s)

zs,u =
∑

(š,u)

η(š, u, s) + y0(s) ∀s ∈ S ′
r (12b)

∑

(š,u)

( ∑

s∈Iin

η(š, u, s) + η(š, u, sbad)
)

=
∑

s∈S ′
r

y0(s) (12c)

zs,u ≥ 0 ∀s ∈ S ′
r ∀u ∈ Ur(s) (12d)

where the notation
∑

(š,u) �
∑

š∈S ′
r

∑
u∈Ur(s) , the vari-

ables satisfy that η(š, u, s) � zš,u pr(š, u, s), η(š, u, sbad) �
zš,u pr(š, u, sbad), and Csufx(S ′

c , d) denotes the objective func-
tion as the summation of the mean cost of reaching Iin and
the expected penalty of reaching sbad. The first constraint bal-
ances the incoming and outgoing flow at each state, whereas
the second constraint ensures that Iin ∪ {sbad} are eventu-
ally reached. Let the optimal solution of (12) be z	

sufx =
{z	

s,u , s ∈ S ′
r, u ∈ Ur(s)}. Then, the optimal stationary pol-

icy for the relaxed plan suffix, denoted by π	
sufx, can be de-

rived as follows: for states in S ′
r, the optimal policy is given by

π	
sufx(s, u) = z	

s,u/(
∑

u∈Ur(s) z	
s,u ) if

∑
u∈Ur(s) z	

s,u �= 0; oth-
erwise the action at s is chosen randomly, ∀s ∈ S ′

r. Note that
π	
sufx(sf , u) = π	

sufx(s
out
f , u), ∀sf ∈ I ′c and ∀u ∈ U(sf ).

Lemma 5: Under the relaxed plan suffix π	
sufx, the probabil-

ity of Zsufx reaching Iin from Iout while staying within S ′′
r over

an infinite horizon is lower bounded by 1 − γsufx(d), where
γsufx(d) �

∑
š∈S ′

r

∑
u∈Ur(š) z	

sufx(š, u) pr(š, u, sbad).
Proof: The proof is a simple inference from (12c). �
Remark 6: A lower bound can be enforced on γsufx as in

(8). However, this bound is hard to estimate and a large bound
can yield the problem infeasible. In contrast, (12) always has a
solution and γsufx(d) is tunable by varying d.

C. Complete Policy

In this section, we present how to combine the stationary
plan prefix and plan suffix of P into the complete finite-memory
policy of the original MDP M. Furthermore, we show how to
execute this finite-memory policy online.

1) Combining the Plan Prefix and Suffix: When AMECs
of P exist, we can combine the plan prefix synthesis and the
plan suffix synthesis for each AMEC into one linear program as
follows:

min
{ys , u ,zs , u }

β · Cpre(Sc) + (1 − β)
∑

(S ′
c ,U ′

c )∈Ξacc

Csuf(S ′
c , U

′
c)

s.t. Constraints (8b)–(8d) and (11c)–(11d) (13)

where Cpre(Sc) and Csuf(S ′
c , U

′
c) are defined in (8a) and (11a),

respectively, the variables {ys,u} satisfy the constraints (8b)–
(8d) and (11c), and the variables zs,u � {zs,u (S ′

c),∀(S ′
c , U

′
c) ∈

Ξacc}, where zs,u (S ′
c), satisfy the constraints (11c)–(11d) for

the AMEC (S ′
c , U

′
c) ∈ Ξacc. The parameter 0 ≤ β ≤ 1 captures

the importance of minimizing the expected total cost to reach
Sc versus stay in Sc . Note that the initial conditions y0 in (11c)
for each state in the suffix are expressed over the variables
{ys,u}. In other words, the initial conditions of each AMEC
are now optimized to solve the combined objective function
(13). It can be solved via any LP solver, e.g., “Gurobi” [36]
and “CPLEX.” Once the optimal solution {y	

s,u} and z	
s,u is

obtained, the optimal plan prefix π	
pre can be constructed as

described in Section IV-B1 and the plan suffix π	
suf as in

Section IV-B2.
On the other hand, when no AECs of P exist, as discussed in

Section IV-B3, we can combine the relaxed plan prefix and suffix
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synthesis for each ASCC into one linear program as follows:

min
{ys , u ,zs , u }

β · Cprex(Sc) + (1 − β)
∑

S ′
c ∈Ωacc

Csufx(S ′
c , d)

s.t. Constraints (8b)–(8d) and (12b)–(12d) (14)

where Cprex(Sc) and Csufx(S ′
c , d) are defined in (8a) and (12a),

respectively, the variables {ys,u} satisfy the constraints (8b)–
(8d), and the variables zs,u � {zs,u (S ′

c),∀S ′
c ∈ Ωacc}, where

zs,u (S ′
c), satisfy the constraints (12b)–(12d) for the ASCC

S ′
c ∈ Ωacc. The parameter 0 ≤ β ≤ 1 captures the importance

of minimizing the expected total cost to reach Sc versus stay
in Sc . Similar to the previous case, the initial conditions y0 in
(12b) for each state in the ASCCs are expressed over the vari-
ables {ys,u}. Thus, the initial conditions are now optimized to
solve the combined objective function (14). Again, it can be
solved via any LP solver. Once the optimal {y	

s,u} and z	
s,u is

obtained, the optimal relaxed plan prefix π	
prex and relaxed plan

suffix π	
sufx can be constructed as described in Section IV-B3.

Note that the size of both linear programs in (13) and (14) is
linear with respect to the number of transitions in P and can be
solved in polynomial time [37]. Note also that the multiobjective
costs introduced in (13) and (14) provide a balance between op-
timizing the plan prefix and suffix. Compared to only optimizing
the plan suffix, i.e., for β = 0 as required to solve Problems 3
and 4, increasing slightly the value of β can lead to a significant
decrease in the total cost of the plan prefix, without sacrificing
much the optimality in the plan suffix.

Observe that the optimal policy derived above only includes
the states within Sn ∪ Sc . Thus, no policy is specified for the
bad states in Sd . Once the system reaches any bad state, it has
violated the formula ϕ and cannot satisfy it anymore. Thus, it
is common practice to stop the system once that happens [4],
[21]. We propose here a new method that allows the system to
recover from the bad state in Sd and continue performing the
task, which could be useful for partially feasible tasks with soft
constraints, as discussed in [7].

Definition 7: The projected distance of a bad state sd =
〈x, l, q〉 ∈ Sd onto Sc ∪ Sn via u ∈ U(sd) is defined as follows:

κ(sd, u) �
∑

š∈Sc ∪Sn

D(l, χ(q, q̌))
|χ(q, q̌)| · pE (x, u, x̌) · pL (x̌, ľ)

(15)
where š � 〈x̌, ľ, q̌〉 and function D : 2AP × 22AP → N returns the
distance between an element l ∈ 2AP and a set χ ⊆ 2AP, was first
introduced in [7] and restated as follows. �

Simply speaking, κ(sd, u) evaluates how much the prod-
uct automaton P is violated on the average if the bad state
sd ∈ Sd is projected into the set of good states Sc ∪ Sn using
action u ∈ U(sd). Function D(�, χ) = 0 if � ∈ χ and D(�, χ) =
min� ′∈χ |{a ∈ AP | a ∈ �, a /∈ �′}| otherwise. Namely, it re-
turns the minimal difference between � and any element in χ.
Given κ(·), the policy at sd ∈ Sd is given by

π	(sd, u) =
{

1 for u = arg minu∈U (sd )κ(sd, u)
0 other u ∈ U(sd)

(16)

which chooses the single action that minimizes (15). Combing
(13), (14), and (16) provides the complete policy for P . The
above-mentioned discussions are summarized in Algorithm 1.

2) Mapping π	 to μ	 : Finally, we need to map the optimal
stationary policy π	 of P above to the optimal finite-memory
policy μ	 of M. Starting from stage t = 0, the initial state
s0 = 〈x0 , l0 , q0〉 ∈ Sn and the optimal action to take is given by
the distribution π	(s0). Assume that u ∈ U(s0) is taken. Then,
at stage t = 1, the robot observes its resulting state x1 and the la-
bel l1 . Thus, the subsequent state inP is s1 = 〈x1 , l1 , q1〉, where
q1 = δ(q0 , l0) is unique as Aϕ is deterministic. The optimal ac-
tion to take now is given by the distribution π	(s1). This process
repeats itself indefinitely. Denote by st ∈ S, the reachable state
at stage t ≥ 0, which is always unique given the robot’s past
sequence of states Xt = x0x1 . . . xt and labels Lt = l0 l1 . . . lt .
Thus, the optimal policy μ	 at stage t ≥ 0, given Xt and Lt , is

μ	(Xt, Lt) = π	(st) (17)

i.e., the control policy at the reachable state st in P is the best
control policy in M at stage t, ∀t ≥ 0. Last but not least, if the
system reaches a bad state at stage t − 1, i.e., st−1 ∈ Sd , accord-
ing to policy (16), the robot will take action u	 and more im-
portantly, the next reachable state is set to be st � 〈xt, lt , q

′
t〉 ∈

(Sc ∪ Sn ), where xt and lt are the observed robot location and
label at stage t and q′t � arg minq̌∈Post(qt−1 )D(lt−1 , χ(qt−1 , q̌)).

Theorem 6: Algorithm 1 solves Problem 1, if AECs of P
exist and β = 0. Otherwise, if no AECs of P exist, then
Problem 1 has no solution. In this case, Algorithm 1 pro-
vides a relaxed policy that minimizes the relaxed suffix cost
Csufx(S ′

c , d) defined in (12). Moreover, given any finite run
ST = s0s1 . . . sT of P under the optimal policy π	 , the proba-
bility that ST does not intersect with the set of bad states Sd for
all time t ∈ [0, T ] is bounded as

Pr(st /∈ Sd,∀t ∈ [0, T ]) ≥ (1 − γprex) · (1 − γsufx(d))Ns

where Ns ≥ 0 is the number of accepting cyclic paths contained
in ST that depends on T .

Proof: To show the first part of this theorem, similar to
Lemma 1, the constraints of (8b)–(8d) ensure that the total prob-
ability of reaching the union of all AMECs is lower bounded
by 1 − γ. Moreover, the first part of Lemma 3 shows that any
infinite run τP of P would satisfy ϕ once it enters any AMEC
(S ′

c , U
′
c) ∈ Ξacc, by following the plan suffix. The fact that π	

also minimizes the mean total cost in (4) when β = 0 in (13)
can be shown as follows: as discussed in [24], [33], and [34],
the mean payoff objective depends on how the system suffix
behaves within the AMECs. The second part of Lemma 3 guar-
antees that the derived plan suffix π	

suf minimizes the mean total
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cost of staying within any of the AMECs while satisfying the
accepting condition.

To show the second part of the theorem, no solution to Prob-
lem 1 exists regardless of the choice of γ, as the probability
of satisfying the task is zero. Instead, when β = 0, the optimal
policy π	 obtained by Algorithm 1 minimizes the relaxed suffix
cost Csufx(S ′

c , d). At the same time, due to the constraints in
(8) that are also present in (13), the plan prefix π	

prex ensures
that all runs stay within Sn with at least probability (1 − γprex)
before entering any ASCC S ′

c ∈ Ωacc, whereas the relaxed plan
suffix π	

sufx ensures that the runs stay within S ′
c with at least

probability (1 − γsufx(d)) for one execution of any accepting
cyclic path. Consequently, if the finite run contains Ns accepting
cyclic paths, the probability of avoiding Sd is lower bounded
by (1 − γprex) · (1 − γsufx(d))Ns . Even though this probability
approaches zero as Ns approaches infinity, this result still en-
sures that the frequency of visiting bad states over finite intervals
is minimized.

3) Policy Execution: Clearly, the optimal policy μ	 from
(17) requires only a finite memory to save the current reachable
state st and the optimal policy π	 . It is synthesized offline once
via Algorithm 1 and its online execution involves observing the
current state xt and label lt , updating the reachable state st , and
applying the action according to π	(st). Details are given in
Algorithm 2.

V. SIMULATION RESULTS

In this section, we present simulation results to validate the
scheme. All algorithms are implemented in Python 2.7 and avail-
able online [32]. All simulations are carried out on a laptop
(3.06-GHz Duo CPU and 8 GB of RAM).

A. Model Description

We consider a partitioned 10 m × 10 m workspace as shown
in Fig. 8, where each cell is a 2 m × 2 m area. The proper-
ties of interest are {Obs, b1, b2, b3, Spl}. The properties sat-
isfied at each cell are probabilistic: three cells at the corners
satisfy b1, b2, and b3, respectively, with probability 1. Four
cells at (1 m, 5 m), (5 m, 3 m), (9 m, 5 m), and (5 m, 9 m) satisfy
Spl with probabilities ranging from 0.2 to 0.8, modeling the
likelihood that a supply appears at that particular cell. One cell

at (5 m, 1 m) satisfies Obs with probability 0.7. Other obstacles
will be described later upon different task scenarios.

The robot motion follows the unicycle model, i.e., ẋ =
v cos(θ), ẏ = v sin(θ), and θ̇ = ω, where p(t) = (x(t), y(t)) ∈
R2 , θ(t) ∈ (−pi, pi] are the robot’s position and orientation at
time t ≥ 0. The control input is u(t) = (v(t), ω(t)) and con-
tains the linear and angular velocities. Due to actuation noise and
drifting, the robot’s motion is subject to uncertainty. The action
primitives and the associated uncertainties are shown in Fig. 2
and described as follows: action “FR” means driving forward
for 2 m by setting v(t) = v0 and ω(t) = 0, ∀t = [0, 2/v0 ]. This
action has probability 0.8 of reaching 2 m forward and prob-
ability 0.1 of drifting to the left or right by 2 m, respectively;
action “BK” can be defined analogously to “FR”; action “TR”
means turning right by an angle of pi/2 by setting v(t) = 0
and ω(t) = −ω0 , ∀t = [0, pi/(2ω0)]. This action has probabil-
ity 0.9 of turning to the right by pi/2, probability 0.05 of turning
less than pi/4 due to undershoot, and probability 0.05 of turning
more than 3pi/4 due to overshoot; action “TL” can be defined
analogously to “TR”; finally, action “ST” means staying still
by setting v(t) = ω(t) = 0, ∀t = [0, T0 ], where T0 is the chosen
waiting time. It has probability 1.0 of staying where it is. The
cost of each action is given by [2, 4, 3, 3, 1], respectively, where
the cost of “ST” is set to 1 as it consumes a unit time to wait at
one cell.

With the above-mentioned model, we can abstract the robot
state by the cell coordinate in which it belongs, namely,
(xc, yc) ∈ {1, 3, · · · , 9}2 and its four possible orientations
(N,E, S,W ). The transition relation and probability can be
built following the aforementioned description. The resulting
probabilistically labeled MDP has 100 states and 816 edges.

In the sequel, we consider three different task formulas in
the order of increasing complexity. We used “Gurobi” [36] to
solve the linear programs in (13) and (14). When comparing the
performance in the plan suffix, we also use the total cost in (9)
as an indicator, especially when the difference in the mean total
cost in (10) is too small to measure.

B. Ordered Reachability

In this case, we show the tradeoff between reducing the ex-
pected total cost and decreasing the risk factor in the plan prefix
synthesis using (8). In particular, the robot needs to reach b1,
b2, and b3 (in this order) from the initial cell while avoiding
obstacles for all time. Afterward, it should stay at b3. The LTL
formula for this task is

ϕ1 = (♦(b1 ∧ ♦(b2 ∧ ♦b3))) ∧ (�¬Obs) ∧ (♦�b3). (18)

The associated DRA derived using [31] has 7 states, 24 transi-
tions, and 1 accepting pair. An additional obstacle is added that
has probability 0.7 of appearing in the cell (5 m, 9 m).

It took 10.9 s to construct the product automaton that has 840
states, and 7280 transitions. Since one AMEC exists, we
synthesize the optimal policy using Algorithm 1 via solving
(13) under β = 0.5 and different risk factors γ chosen from
{0, 0.1, . . . , 0.4}, which took on average 0.1 s. Then, we per-
form 1000 Monte Carlo simulations of 500 time steps each,
where we evaluate the total cost in (7) and whether the task
is satisfied. As shown in Table I, the total cost increases when
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TABLE I
STATISTICS OF 1000 MONTE CARLO SIMULATIONS OF 500 TIME STEPS,

UNDER DIFFERENT γ FOR TASK (18)

γ Total cost Failure Success Unfinished

0 132.2 0 910 90
0.1 118.1 99 872 29
0.2 110.5 219 770 11
0.3 104.6 308 692 0
0.4 98.3 417 583 0

Fig. 7. Normalized distribution of the total cost of accepting cyclic paths
from 1000 Monte Carlo simulations under the optimal plan suffix (left)
and the Round-Robin policy (right), for task (19).

the allowed risk factor γ is decreased. The percentage of simu-
lated runs that collide with an obstacle is approximately (1 − γ),
which verifies the risk constraint in Lemma 1.

C. Surveillance

In this case, we compare the efficiency of the optimal plan
suffix from Algorithm 1 and the Round-Robin policy. Particu-
larly, the robot should visit b1, b2, and b3 infinitely often for
surveillance and avoid all obstacles

ϕ2 = (�♦b1) ∧ (�♦b2) ∧ (�♦b3) ∧ (�¬Obs). (19)

The associated DRA has 8 states, 30 transitions, and 1 accept-
ing pair. It took 5.8 s to construct the product P that has 700
states, 5712 transitions, and 1 accepting pair. Since one AMEC
exists in the product, we synthesize the optimal policy using
Algorithm 1 via solving (13) under γ = 0 and β = 0.1, which
took 0.2 s. We conducted 1000 Monte Carlo simulations and
Fig. 7 shows that the total cost from (9) of accepting cyclic paths
in the plan suffix under the optimal policy is much lower than the
Round-Robin policy (50 versus 400). Moreover, Fig. 9 shows
that the average number of times each base station is visited
by the robot under the optimal policy is much higher than under
the Round-Robin policy.

Fig. 8. Simulated trajectory suffix under the optimized plan suffix is
applied (left) and the Round-Robin policy (right).

Fig. 9. Left: The average number of times each base is visited, for task
(19). Right: The average number of supplies received at each base for
task (20). The optimal policy is shown in solid lines while the Round-
Robin policy in dashed lines.

TABLE II
OPTIMAL PREFIX COST, SUFFIX COST, AND THE BALANCED COST AS

DEFINED IN (13) OF TASK (20) UNDER DIFFERENT β WITH γ = 0

β Prefix cost Suffix cost Balanced cost by (13)

Total Mean

0 180.7 66.1 2.524 66.1
0.2 62.4 67.1 2.533 65.2
0.4 50.5 72.9 2.551 64.1
0.6 49.8 73.5 2.552 59.3
0.8 49.5 74.3 2.554 54.4
1.0 49.5 246.7 2.817 49.5

D. Ordered Supply Delivery

In this case, we demonstrate the reactiveness of the derived
optimal policy. The robot needs to collect supplies from the
cells that are marked by Spl, where supplies appear probabilis-
tically. Then, it needs to transport these supplies to each base
station. Furthermore, the robot should not visit two base stations
consecutively without collecting a supply first. It should always
avoid obstacles. The LTL task formula is

ϕ = ϕall base ∧ ϕorder ∧ (�¬Obs) (20)

where ϕall base = (�♦b1) ∧ (�♦b2) ∧ (�♦b3) means that all
base stations should be visited infinitely often and ϕorder =
�(ϕone → ©((¬ϕone) U Spl)), with ϕone = (b1 ∨ b2 ∨ b3)
means that when one base station is visited, then no base can be
visited until a supply has been collected. The associated DRA
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TABLE III
SIZE AND COMPUTATION TIME OF VARIOUS MODELS M AS DESCRIBED IN SECTION V-E UNDER TASK (20)

M P AMECs Ξacc π	 via (13)

Size Time [s] Size Time [s] Size Time [s] Size of (8) Size of (11) Time to solve (13) [s]

(100, 816) 0.13 (4.2e3, 4.1e4) 16.3 1.2e3 4.15 (443, 2.0e3, 8.3e3) (1.2e3, 4.9e3, 2.1e4) 0.21
(324, 2.8e3) 1.69 (1.1e4, 1.0e5) 41.2 3.6e3 29.4 (1.3e3, 6.3e3, 2.2e4) (3.6e3, 1.7e4, 5.9e4) 0.72
(900, 8.4e3) 24.2 (2.9e4, 2.8e5) 106.8 1.0e4 337.1 (3.6e3, 1.7e4, 6.0e4) (9.9e3, 4.8e4, 1.6e5) 16.74
(1.4e3, 1.3e4) 88.7 (4.7e4, 4.5e5) 391.7 1.6e4 1.1e3 (5.8e3, 2.8e4, 9.7e4) (1.5e4, 7.7e4, 2.6e5) 20.81
(2.5e3, 2.4e4) 326.9 (8.1e4, 7.8e5) 290.1 2.7e4 4.8e3 (1.0e4, 4.9e4, 1.6e5) (2.7e4, 1.3e5, 4.5e5) 15.74
(3.3e3, 3.2e4) 558.3 (1.0e5, 1.1e6) 380.1 3.7e4 9.4e3 (1.3e4, 6.6e4, 2.2e5) (3.7e4, 1.8e5, 6.1e5) 32.04

The notation aeb � a× 10b for a, b > 0. The size of M, Aϕ , and P includes the number of states and transitions. The size of LP problems (13), which contains (8) and
(11), includes the number of rows, columns, and variables in the linear equations, as indicated by the “Gurobi” solver [36].

is derived using [31] and [32] in 0.05 s, which has 32 states, 298
transitions, and 1 accepting pair.

It took around 16 s to construct the product automaton that
has 4224 states, 41344 transitions, and 1 accepting pair. Since
two AMECs exist in the product, we synthesize the optimal
policy using Algorithm 1 via solving (13) under γ = 0 and
β = 0.1, which took around 0.2 s, given the complexity of task
(20). Notice that the optimal plan sometimes requires the robot
to wait at a cell marked by Spl by taking action “ST” since the
expected cost of traveling to another cell with supply might be
higher than waiting there for the supply to appear. Fig. 8 com-
pares the simulated trajectories under the optimal policy and the
Round-Robin policy. Based on 1000 Monte Carlo simulations,
the total cost of accepting cyclic paths is much lower under the
optimal policy than the Round-Robin policy (70 versus 550).
Furthermore, Fig. 9 shows the average number of supplies re-
ceived at each base under these two policies. It can be seen that
much more supplies are received at each base station under the
optimal policy. Simulation videos of both cases can be found
in [38]. Finally, to show how the choice of β in (13) affects the
optimal prefix and suffix cost, we repeat the above-mentioned
procedure for different β and the results are summarized in
Table II. In the table, the prefix cost equals to Cpre(Sc), and
the mean suffix cost equals to

∑
(S ′

c ,U ′
c ) ∈Ξacc

Csuf(S ′
c , U

′
c) from

(13). The total suffix cost is computed based on (9) in order to
magnify the changes in the suffix cost. It can be noticed that for
small nonzero values of β, less than 0.2, the optimal prefix cost
is reduced dramatically (from 180.7 to 62.4), without increasing
much the optimal suffix cost (from 66.1 to 67.1).

In order to demonstrate scalability and computational com-
plexity of the proposed algorithm, we repeat the policy synthesis
under the same task (20), but for workspaces of various sizes.
Particularly, we increase the number of cells from 52 to 92 , 152 ,
192 , 252 , and 292 . The size of resulting M, P , and Ξacc, and
the time taken to compute them are shown in Table III, where
we also list the complexity of the LP (13), which consists of (8)
and (11), and the time taken to solve (13). It can be seen from
Table III that solving (13) requires a small fraction of total time,
compared to the construction of M, P , and Ξacc.

E. Surveillance With Clustered Obstacles

In this case, we demonstrate how the relaxed plan prefix and
suffix can be synthesized under scenarios where no AECs can
be found. In particular, we consider the surveillance task in (19)

Fig. 10. Two simulated trajectories of 200 time steps for the surveil-
lance task (19), under the relaxed optimal policy.

TABLE IV
STATISTICS OF 1000 MONTE CARLO SIMULATIONS UNDER DIFFERENT γprex

AND d, FOR TASK (19) IN SECTION V-E

γprex d γsufx Failure Pre. Success Suf. Success

0.1 300 0.05 106 894 852
0.2 300 0.05 169 831 785
0.3 300 0.05 318 682 650
0.4 300 0.05 409 591 549
0.1 280 0.85 888 901 117
0.1 270 0.98 997 903 4

but more obstacles are placed in the workspace as shown in
Fig. 10. The center cell (5 m, 5 m) has probability 0.9 of being
occupied by an obstacle and the four cells above and on the left
have probability 0.01 of being occupied by an obstacle. Thus,
b1 is surrounded by possible obstacles around it, even though
the probability is very low.

The resulting product automaton has 1184 states, 13888 tran-
sitions, and 1 accepting pair. It can be verified that no AECs exist
inP , and thus the second case of Algorithm 1 is activated, where
the optimal solution is derived by solving (14). We synthesize
the relaxed optimal policy under different γprex and d, as shown
in Table IV. It took in average 37 s to synthesize the complete
policy for β = 0.1 and any chosen γprex and d in this case.
Recall that d is a large positive penalty for entering the set of
bad states in (12). In particular, we first choose γprex = 0.1 and
d = 300. Two simulated trajectories under the derived policy are
shown in Fig. 10. Furthermore, we perform 1000 Monte Carlo
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TABLE V
SIZE AND COMPUTATION TIME OF VARIOUS MODELS M UNDER TASK (19) WHERE No AECS EXIST IN P

M P ASCCs Ωacc π	 via (14)

Size Time [s] Size Time [s] Size Time [s] Size of (8) Size of (12) Time to solve (14) [s]

(100, 816) 0.13 (1.0e3, 1.1e4) 0.9 3.1e2 0.66 (202, 920, 3.4e3) (301, 1.4e3, 4.9e3) 0.45
(324, 2.8e3) 1.57 (2.9e3, 3.1e4) 3.39 9.8e2 1.84 (6.5e2, 3.1e3, 1.1e4) (9.7e2, 4.7e3, 1.6e4) 2.41
(900, 8.4e3) 23.9 (7.7e3, 7.9e4) 7.04 2.7e3 5.09 (1.8e3, 8.7e3, 3.0e4) (2.7e3, 1.3e4, 4.5e4) 9.89
(1.4e3, 1.3e4) 92.2 (1.2e4, 1.2e5) 9.78 4.3e3 8.41 (2.9e3, 1.4e4, 4.9e4) (4.3e3, 2.1e4, 7.2e4) 22.94
(2.5e3, 2.4e4) 322.1 (2.1e4, 2.1e5) 20.1 7.5e3 17.1 (5.1e3, 2.5e4, 8.5e4) (7.5e3, 3.7e4, 1.3e5) 83.33
(3.3e3, 3.2e4) 625.2 (2.8e4, 2.9e5) 23.1 1.0e4 19.6 (6.7e3, 3.3e4, 1.1e5) (1.0e4, 4.9e4, 1.7e5) 145.8

The notations are defined similarly as in Table III. In this case, the combined LP in (14) contains (8) and (12) instead.

simulation under γprex and d listed in Table IV, where we com-
pare the number of times that the robot fails the task by colliding
with obstacles (the failure), the number of times that the robot
successfully reaches the set of ASCC Sc (the prefix success), and
the number of times that the robot successfully executes one ac-
cepting cyclic path associated with S ′

c and I ′c of one ASCC (the
suffix success). It can be seen that (1 − (1 − γprex)(1 − γsufx)),
(1 − γprex), and (1 − γsufx) match very well the probability of
failure, the prefix success, and the suffix success, respectively,
as discussed in Theorem 6. Also, it can be seen that the system
can recover from the bad states and continue executing the task
if the recovery policy proposed in (16) is activated. It can also
be seen that increasing γprex leads to a lower prefix success rate
and decreasing d leads to a lower suffix success rate.

To demonstrate scalability and computational complexity of
the proposed algorithm when AMECs do not exist, we repeat
the policy synthesis under the same task (19) but for different
workspaces of various sizes, as in Section V-D. We set γ = 0.3,
d = 300, and β = 0.1. The size of resulting M, P , and Ωacc,
and the time taken to compute them are shown in Table V, where
we also list the complexity of (14), which consists of (8) and
(12), and the time taken to solve (14). It can be seen above
that solving (14) now requires a larger fraction of total time,
compared to the construction of M, P , and Ωacc. However, it
requires much less time to compute the set of ASCCs Ωacc than
the set of AMECs Ξacc. For instance, in the case of 292 cells
in the workspace, it took around 23.1 s to construct P (which
has approximately 2.8 × 104 states and 2.9 × 105 transitions)
and 19.6 s to construct its ASCCs (compared with 160 min in
Table III). Once (14) is constructed, it took around 2.5 min to
solve it.

F. Comparison With PRISM

In this section, we compare the proposed algorithm to the
widely used model-checking tool PRISM [13]. The following
results were obtained using PRISM 4.3.1, where LP is chosen
as the solution method. First, since PRISM does not take the
probabilistically labeled MDP in (1) as inputs, we translate the
product automaton in (5) into PRISM language and verify its
Rabin accepting condition directly. Implementation details can
be found in [32]. For tasks (18), (19), and (20), PRISM verifies
that the probability of satisfying each of them is 1.0, within time
0.46 s, 0.38 s, and 6.4 s, respectively. The difference in com-
putation time is likely due to the difference in the LP solvers.
Second, in order to test different values of γ, we use the “multi-

Fig. 11. Experiment workspace (left) with the monitoring panel. Three
bases are marked by yellow tapes, whereas the tripod represents the
obstacle. The monitoring panel displays the real-time position, the control
policy, the motion uncertainty, and the robot status [being in prefix (green)
or in suffix (magenta)]. Customizable virtual experiment platform (right)
in V-REP for task (19) where no AMECs can be found in the product (see
[32] and [40]).

objective property” to find the minimal cumulative reward while
ensuring that the risk of violating the task is bounded by γ. Note
that the associated model has to be the modified product model
Zpre defined in Section IV-B1 as PRISM does not currently
support multiobjective property with the “F target” operator
(i.e., ♦Sc ). The computation time is approximately the same
as in the previous cases. Last, the current PRISM version does
not support the mean-payoff optimization in the AMECs, nor
does it generate the relaxed control policy for the case where
no AMECs exist in the product automaton. In fact, PRISM will
simply return that the maximal probability of satisfying the task
is 0. The MultiGain tool recently proposed in [34] can handle
multiple mean-payoff constraints but does not allow the tuning
of the satisfaction probability (1 − γ).

VI. EXPERIMENTAL STUDY

In this section, we present an experimental study. We use a
differential-driven “iRobot” whose position we track in real time
via an Optitrack motion capture system. The communication
among the planning module, the robot actuation module, and
the Optitrack is handled by the Robot Operating System. The
software implementation for this experiment is available in [39].
The experiment videos are online [40].

A. Model Description

Consider the 2.5 m × 1.5 m experiment workspace as shown
in Fig. 11, with three base stations located at the corners and one
obstacle region. It consists of 5 × 3 square cells of dimension
0.5 m × 0.5 m each. The robot’s motion within the workspace
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Fig. 12. Robot trajectory to satisfy task (18) (left) and (19) (right) when
γ = 0, sampled at every 15 s.

is abstracted similarly as in Section V-A. The resulting MDP
has 60 states and 456 edges.

B. Experimental Results

We consider two different tasks: first, the sequential visiting
task (18), and then, the surveillance task (19).

1) Sequential Visiting Task: The LTL task formula is given
in (18) and the associated DRA is constructed in Section V-B.
The obstacle has probability 0.1 of appearing in the cell
(1.25 m, 1.25 m). The resulting product automaton in this case
has 532 states, 4228 edges, and 1 accepting pair. For γ = 0 and
β = 0.1, it took 3.16 s to synthesize the complete policy using
Algorithm 1, resulting in an average prefix cost 47.72 and suf-
fix cost 1.0. Then, the robot was controlled in real time using
Algorithm 2. The robot state was retrieved using the motion
capture system and the observed label was generated randomly.
The complete video is online [40] and the resulting trajectory is
shown in Fig. 12. Notice that the robot avoids complete collision
with the obstacle.

2) Surveillance Task: The LTL task formula is given in
(19) and the associated DRA is constructed in Section V-B.
The obstacle has probability 0.1 of appearing in the cell
(1.25 m, 0.75 cm). The resulting product automaton in this case
has 608 states, 4992 edges, and 1 accepting pair.

In the first experiment, we choose γ = 0 and β = 0.1, so that
there is no risk allowed in the plan prefix. It took 5.2 s to synthe-
size the complete plan offline using Algorithm 1. The real-time
execution of the system followed Algorithm 2. The resulting
trajectory is shown in–Fig. 12. In the second experiment, we
selected γ = 0.1 and β = 0.1 to allow risk in the plan prefix.
It took 4.9 s to synthesize the complete policy. Compared to
the case where γ = 0, the optimal policy instructs the robot to
move forward, straight to the base station at (2.25 m, 0.25 m),
even though there is a risk of colliding with the obstacle at
(1.25 m, 0.75 m) due to the uncertainty in its forward action.
Both experiment videos are online [40].

Finally, to demonstrate the proposed scheme for much larger
workspaces and more complex tasks, particularly when no
AMECs can be found in the product automaton, we create a
virtual experiment platform based on V-REP [41], which is
available in [32]. A snapshot is shown in Fig. 12. The user
can easily change the configuration of the workspace and the
robot task specification. Once the control policy is synthesized
via Algorithm 1 and saved, the user can perform any number
of test runs in this environment. Demonstration videos are on-
line [40] where we replicate the surveillance task with clustered

obstacles from Section V-E. It can be seen that the relaxed con-
trol policy can ensure high probability of avoiding bad states
over long time intervals.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a plan synthesis algorithm for prob-
abilistic motion planning, subject to high-level LTL task formu-
las and risk constraints. Uncertainties in both the robot motion
and the workspace properties are considered. We obtain optimal
policies that optimize the total cost both in the prefix and suffix of
the system trajectory. We also address the case where no AECs
exist in the product automaton, in which case, the probability of
satisfying the task is zero. The proposed solution provides prov-
able guarantees on the probabilistic satisfiability and the mean
total-cost optimality, and is verified via both numerical simula-
tions and experimental studies. Future work involves extensions
to multirobot systems.
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